Soal komposisi fungsi dan invers fungsi

Nama: Salma Rasikha 

Kelas: X IPS 3

Absen: 30


SOAL KOMPOSISI FUNGSI

Jika f(x) = \frac{x}{x-1}, x \not= 1 dan g(x) = f(x^2 +1), tentukanlah nilai g(f(x))

Pembahasan

g(x) = f(x^2+1)

g(x) = \frac{(x^2+1)}{(x^2+1)-1} = \frac{x^2+1}{x^2}

g(x) = 1+ \frac{1}{x^2}

Maka:

g(f(x)) = 1 + \frac{1}{(f(x))^2}

g(f(x)) = 1 + \frac{1}{(\frac{x}{x-1})^2} = 1 + (\frac{x-1}{x})^2 = 1 + \frac{x^2-2x+1}{x^2}

g(f(x)) = 2 - \frac{2}{x} + \frac{2}{x} + \frac{1}{x^2}


SOAL FUNGSI INVERS

Diketahui f^{-1}(x) = \frac{1}{2}(x - 3), tentukan f(x).

Pembahasan

f^{-1}(y) = \frac{1}{2}(y -3)

x = \frac{1}{2}(y - 3)

2x = (y - 3)

y = 2x + 3

Maka,

f(x) = 2x + 3

daftar pustaka

https://www.studiobelajar.com/relasi-fungsi-komposisi-invers/

Postingan populer dari blog ini

Tugas Matematika Soal Cerita Dari Persamaan 3 Variabel Dan Penyelesaiannya

LUAS SEGI-n BERATURAN, JARI-JARI LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA, GARIS SINGGUNG PERSEKUTUAN LUAR/DALAM LINGKARAN

Transformasi Geometri