Tugas Matematika sistem persamaan dan pertidaksamaan kuadrat-linear bersama contoh soalnya

Nama : Salma Rasikha
kelas  : X IPS 3
Absen: 30


Sistem Persamaan kuadrat linear dan contohnya
Sistem persaman kuadrat linear adalah Sistem persamaan yang terdiri atas sebuah Persamaan linear dan sebuah persamaan kuadrat yang masing-masing bervariabel dua disebut sistem persamaan linear-kuadrat (SPLK).
Contohnya :
1. Carilah himpunan penyelesaian SPLK berikut, kemudian gambarkan sketsa tafsiran geometerinya.
y = x2  1
x  y = 3
Penyelesaian:
Persamaan x  y = 3 dapat kita tulis ulang menjadi bentuk berikut.
y = x  3
subtitusikan y = x  3 ke dalam persamaan y = x2  1 sehingga kita peroleh:
 x  3 = x2  1
 x  3 = x2  1
 x2  x  1 + 3 = 0
 x2  x + 2 = 0
Persamaan kuadrat di atas sulit untuk difaktorkan. Jika kita hitung nilai diskriminannya dengan nilai a = 1, b = 1, dan c = 2, maka kita peroleh:
D = b2  4ac
D = (1)2  4(1)(2)
D = 1  8
D = 7
Karena diskriminannya negatif (D < 1) maka persamaan kuadrat itu tidak memiliki penyelesaian. Oleh karena itu, SPLK di atas tidak memiliki penyelesaian sehingga himpunan penyelesaiannya dapat ditulis . Interpretasi geometri dari SPLK ini adalah tidak adanya titik singgung maupun titik potong antara parabola dan garis lurus. Hal ini dapat kalian lihat pada gambar di bawah ini.

2. Carilah himpunan penyelesaian SPLK berikut, kemudian gambarkan sketsa tafsiran geometerinya.
x + y + 2 = 0
y = x2  x  2
Penyelesaian:
Persamaan x + y + 2 = 0 dapat kita tuliskan sebagai berikut.
y = x  2
Subtitusikan nilai y = x  2  ke persamaan y = x2  x  2 sehingga diperoleh:
 x  2 = x2  x  2
 x2  x + x  2 + 2 = 0
 x2 = 0
 x = 0
Subtitusikan nilai x = 0 ke persamaan y = x  2 sehingga diperoleh:
 y = (0)  2
 y = 2
Jadi, himpunan penyelesaiannya adalah {(0, 2)}. Tafsiran geometrinya berupa titik singgung antara garis lurus dan kurva parabola, yaitu di titik (0, 2) seperti yang ditunjukkan pada gambar berikut ini.

3. Carilah himpunan penyelesaian dari SPLK berikut ini.
x + y  1 = 0 ……….bagian linear
x2 + y2  25 = 0 …..bagian kuadrat berbentuk implisit yang tak dapat difaktorkan
Jawab:
Pada bagian persamaan linear, kita nyatakan y dalam x yaitu sebagai berikut.
 x + y  1 = 0
 y = 1  x
Lalu subtitusikan persamaan y = 1  x ke persamaan kuadrat x2 + y2  25 = 0, sehingga kita peroleh:
 x2 + y2  25 = 0
 x2 + (1  x)2  25 = 0
 x2 + 1  2x + x2  25 = 0
 2x2  2x  24 = 0
 x2  x  12 = 0
 (x + 3)(x  4) = 0
 x = 3 atau x = 4
Setelah nilai-nilai x kita peroleh, selanjutnya subtitusikan x = 3 atau x = 4 ke persamaan linear x + y  1 = 0 yaitu sebagai berikut.
 untuk x = 3 diperoleh:
 x + y  1 = 0
 3 + y  1 = 0
 y  4 = 0
 y = 4
Kita peroleh himpunan penyelesaian (3, 4).
 untuk x = 4 diperoleh:
 x + y  1 = 0
 4 + y  1 = 0
 y + 3  = 3
 y = 4
Kita peroleh himpunan penyelesaian (4, 3).
Jadi, himpunan penyelesaiannya adalah {(3, 4), (4, 3)}. Anggota-anggota dari himpunan penyelesaian SPLK tersebut dapat ditafsirkan sebagai koordinat titik potong garis x + y = 1 dengan lingkaran x2 + y2 = 25. Perhatikan gambar berikut ini.

Sistem Pertidaksamaan kuadrat linear.

Sistem Pertidaksamaan kuadrat linear dan contohnya
sistem pertidaksamaan linear dua variabel adalah suatu kalimat terbuka dari ilmu matematika yang didalamnya berisi dua variabel. Dengan masing-masing dari variabel berderajat satu dan dihubungkan dengan tanda ketidaksamaan.
cotohnya:
1. Gambarlah daerah penyelesaian pertidaksamaan kuadrat y > x2 – 8x + 12
Jawab:

(1) Tititk potong dengan sumbu-X syarat y = 0
x2 – 8x + 12 = 0
(x – 6)(x – 2) = 0
x = 6 dan x = 2 Titik potongnya (2, 0) dan (6, 0)

(2) Tititk potong dengan sumbu-Y syarat x = 0
y = x2 – 8x + 12
y = (0)2 – 8(0) + 12
y = 12 Titik potongnya (0, 12)

(3) Menentukan titik minimum fungsi y = x2 – 8x + 12


(4) Gambar daerah penyelesaiannya (Daerah yang diarsir adalah daerah penyelesaian)


Ini foto saya sedang belajar matematika:












Daftar Pustaka:
https://blogmipa-matematika.blogspot.com/2018/06/kumpulan-contoh-soal-dan-jawaban-splk.html
https://www.materimatematika.com/2017/11/sistem-pertidaksamaan-linier-dan-kuadrat.html

Postingan populer dari blog ini

Tugas Matematika Soal Cerita Dari Persamaan 3 Variabel Dan Penyelesaiannya

LUAS SEGI-n BERATURAN, JARI-JARI LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA, GARIS SINGGUNG PERSEKUTUAN LUAR/DALAM LINGKARAN

Transformasi Geometri