SISTEM PERSAMAAN KUADRAT-KUADRAT DAN CONTOH SOALNYA

Nama: Salma Rasikha

Kelas: X IPS 3

Absen: 30


Sistem persamaan kuadrat-kuadrat atau disingkat dengan SPKK merupakan sistem persamaan yang terdiri atas dua persamaan kuadrat yang masing-masing memuat dua variabel. Atau kumpulan persamaan kuadrat yang mempunyai solusi yang sama.

Contoh soal Sistem Persamaan Kuadrat-Kuadrat 

1. Tentukan himpunan penyelesaian SPKK jika diketahui persamaan y =  5x² dan y = 6x² – 7x?

Pembahasan.
Contoh soal sistem persamaan kuadrat kuadrat ini dapat diselesaikan dengan melakukan substitusi y = 5x² ke y = 6x² – 7x. Untuk itu hasilnya akan menjadi:
               5x² = 6x² – 7x
6x² – 5x² – 7x = 0
          x² – 7x = 0
         x(x – 7) = 0
  x = 0 atau x = 7

Selanjutnya nilai x di atas disubtsitusikan ke persamaan y =  5x². Maka :
Untuk x = 0 → y = 5x²
                      y = 5(0)²
                      y = 0

Untuk x = 7 → y = 5x²
                      y = 5(7)²
                      y = 245
Jadi himpunan penyelesaian SPKK tersebut ialah {(0, 0), (7, 245)}.

2. Tentukan himpunan penyelesaian SPKK berikut dan gambarkan sketsa grafik tafsiran geometrinya.
y = x2  1
y = x2  2x  3
Jawab:
Subtitusikan bagian kuadrat yang pertama y = x2  1 ke bagian kuadrat yang kedua y = x2  2x  3 sehingga diperoleh:
 x2  1 = x2  2x  3
 x2  x2 = 2x  3 + 1
 2x = 2
 x = 1
Selanjutnya, subtitusikan nilai x = 1 ke persamaan y = x2  1 sehingga diperoleh:
 y = x2  1
 y = (1)2  1
 y = 1  1
 y = 0
Dengan demikian, himpunan penyelesaian dari SPKK tersebut adalah {(1, 0)}. Tafsiran geometrinya adalah grafik parabola y = x2  1 dan parabola y = x2  2x  3 berpotongan di satu titik, yaitu di (1, 0). Perhatikan gambar di bawah ini.
grafik penyelesaian SPKK (sistem persamaan kuadrat dan kuadrat)

3. Tentukan himpunan penyelesaian SPKK jika persamaannya y = x² – 3 dan y = x² – 2x – 9?

Pembahasan.
Contoh soal sistem persamaan kuadrat kuadrat ini dapat diselesaikan dengan melakukan substitusi y = x² – 3 ke y = x² – 2x – 9. Untuk itu hasilnya akan menjadi seperti di bawah ini:
  x² – 3 = x² – 2x – 9
x² – x² = -2x – 9 + 3
      2x = -6
        x = -3

Setelah itu x = -3 disubstitusikan ke y = x² – 3. Maka:
y = x² – 3
y = (-3)² – 3
y = 6
Jadi himpunan penyelesaian SPKK tersebut ialah {(-3, 6)}.

4. Tentukan himpunan penyelesaian SPKK berikut dan gambarkan sketsa grafik tafsiran geometrinya.

y = x2
y = 2x2  3x
Jawab:
Subtitusikan bagian kuadrat yang pertama y = x2 ke bagian kuadrat yang kedua y = 2x2  3x sehingga diperoleh:
 x2 = 2x2
 2x2  x2  3x = 0
 x2  3x = 0
 x(x  3) = 0
 x = 0 atau x = 3
Selanjutnya, subtitusikan nilai x = 0 dan x = 3 ke bagian kuadrat yang pertama y = x2.
 Untuk x = 0 diperoleh:
 y = x2
 y = (0)2
 y = 0
 Untuk x = 3 diperoleh:
 y = x2
 y = (3)2
 y = 9
Dengan demikian, himpunan penyelesaian SPKK itu adalah {(0, 0), (3, 9)}. Anggota-anggota dari himpunan penyelesaian SPKK tersebut secara geometris dapat ditafsirkan sebagai koordinat titik potong antara parabola y = x2 dengan parabola y = 2x2  3x. Untuk lebih jelasnya, perhatikan gambar di bawah ini.
grafik penyelesaian SPKK (sistem persamaan kuadrat dan kuadrat)
Daftar Pustaka:
https://rpp.co.id/soal-sistem-persamaan-kuadrat-kuadrat-spkk/
https://blogmipa-matematika.blogspot.com/2017/12/contoh-soal-SPKK.html

Ini foto saya sedang belajar matematika:


Postingan populer dari blog ini

Tugas Matematika Soal Cerita Dari Persamaan 3 Variabel Dan Penyelesaiannya

LUAS SEGI-n BERATURAN, JARI-JARI LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA, GARIS SINGGUNG PERSEKUTUAN LUAR/DALAM LINGKARAN

Transformasi Geometri